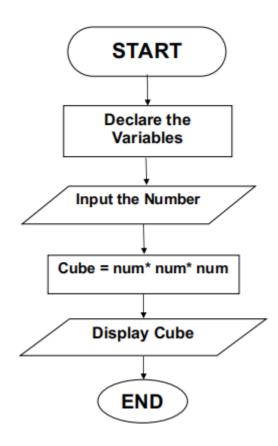


EXPERIMENT NUMBER - Practical 6.1

STUDENT'S NAME -

STUDENT'S UID -


CLASS AND GROUP-

SEMESTER - 2

TOPIC OF EXPERIMENT - POLYMORPHISM

<u>AIM OF THE EXPERIMENT</u> - WAP to calculate and display cube of an integer and float variable using function overloading.

FLOWCHART/ ALGORITHM-

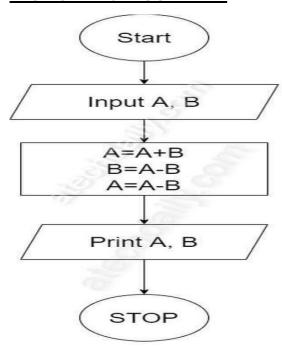
OUTPUT -

```
Cube of integer number 7 is 343
Cube of float number 7.5 is 421.875
...Program finished with exit code 0
Press ENTER to exit console.
```


EXPERIMENT NUMBER - Practical 6.2

STUDENT'S NAME - YASH RAJ

STUDENT'S UID - 21BCS11765

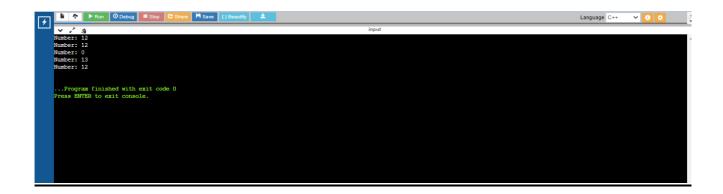

CLASS AND GROUP- 509-B

SEMESTER - 2

TOPIC OF EXPERIMENT - POLYMORPHISM

<u>AIM OF THE EXPERIMENT</u> - Program to demonstrate the unary operator overloading for operator ++. Make a class test. Create a default constructor to initialize the variable. 1) Overload operator ++ (Pre) with definition to pre-decrement the value of a variable 2) Overload operator ++ (post) with definition to post-decrement the value of variable.

FLOWCHART/ ALGORITHM -


```
| Second Contract
| Contract Contract
| C
```

```
| Text |
```

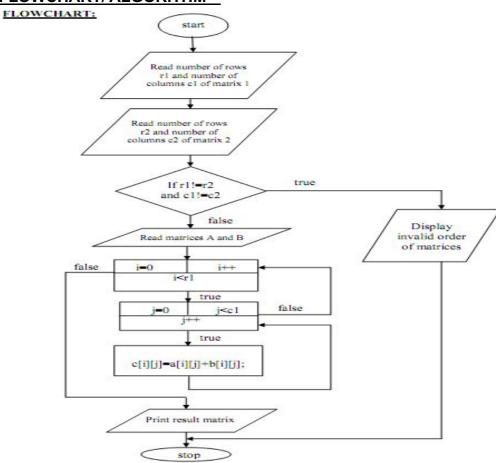
```
| Test |
```


OUTPUT-

EXPERIMENT NUMBER - Practical 6.3

STUDENT'S NAME - YASH RAJ

STUDENT'S UID - 21BCS11765


CLASS AND GROUP - 509-B

SEMESTER - 2ND

TOPIC OF EXPERIMENT - POLYMORPHISM

<u>AIM OF THE EXPERIMENT</u> - WAP for creating a matrix class which can handle integer matrices of different dimensions. Overload the operator (+) for addition and (==) comparison of matrices.

FLOWCHART/ ALGORITHM -


```
| Section | Sect
```



```
| Part | Description | Descrip
```


OUTPUT-

```
Elements of Matrix 1:

[ 1, 2, ]
[ 3, 4, ]

Elements of Matrix 2:

[ 1, 2, ]
[ 3, 4, ]

Elements of Matrix 3:

[ 4, 3, ]
[ 2, 1, ]

Elements of Matrix after addition of Matrix 1 and Matrix 3:

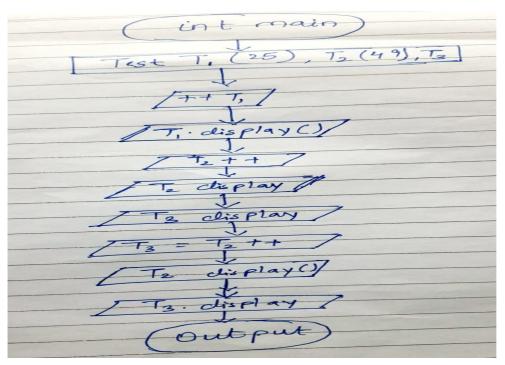
[ 5, 5, ]
[ 5, 5, ]

[ 5, 5, ]

Matrix 1 is equals to Matrix 2

Matrix 1 is not equals to Matrix 3
```


EXPERIMENT NUMBER – Practical 6.4


STUDENT'S NAME – YASH RAJ STUDENT'S UID – 21BCS11765 CLASS AND GROUP – 509-B

SEMESTER -2ND

TOPIC OF EXPERIMENT - POLYMORPHISM

AIM OF THE EXPERIMENT - WAP to create a class Pairs. Objects of type Pairs can be used in any situation where ordered pairs are needed. Our Task is to overload operator >> and << so that objects of class Pairs are to be input and output in the form (5,3) (5,-6) (-5,6) or (-5,-3). There is no need to implement any constructor/method.

FLOWCHART/ ALGORITHM-


```
9 #include <iostream>
13 - class Test {
    int num;
19
20
21 public:
22
23 - Test() {
27 }
28
29 - Test(int n) {
30
31 num = n;
35 - void display() {
36
37     coutcc "Number: " <<numc<endl;
38
39     }
      }
Test operator++ () {
            ++num;
return Test(num);
        Test operator++( int ) {
            Test t(num);
int main() {
 Test T1(25), T2(49), T3;
T1.display();
```


OUTPUT-

```
Number: 26
Number: 50
Number: 0
Number: 51
Number: 50
...Program finished with exit code 0
Press ENTER to exit console.
```

LEARNING OUTCOMES

- Identify situations where computational methods would be useful.
- Approach the programming tasks using techniques learnt and write pseudo-code.
- Choose the right data representation formats based on the requirements of the problem.
- Use the comparisons and limitations of the various programming constructs and choose the right one for the task.

EVALUATION COLUMN (To be filled by concerned faculty only)

Sr. No.	Parameters	Maximum Marks	Marks Obtained
1.	Worksheet Completion including writing learning objective/ Outcome	10	
2.	Post Lab Quiz Result	5	
3.	Student engagement in Simulation/ Performance/ Pre Lab Questions	5	
4.	Total Marks	20	

